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Abstract. We try to find some materials in which bosonic ions with sufficiently small effective mass are 
used as charge carriers instead of Cooper’s pairs in order to provide high temperature ionic 
superconductivity. Among single-charged ions comprising ionic crystals only lithium isotope Li6 can be 
used for that purpose. The results show that Bose-condensation temperature for Li6-ions is of the order of 
10-34 -10-43K in all crystals. If, however, the crystal is compressed by 20-22%, it can rise the Bose-
condensation temperature in all crystals considered to above room temperature.  

 
Introduction 

 
Ionic crystals, i.e. crystals formed from positive and negative ions, are widely known. As a 

rule, they are dielectrics due to large electronic band gap and absence of free carriers in the 
conduction band so that all electronic states in the valence band are occupied almost at all 
temperatures up to the melting point [1]. Consider, for example, ionic crystals LiF, LiCl, LiBr and 
LiI with NaCl crystal structure. Obviously, the distribution of lithium ions in the crystal lattice can 
be described by Schrödinger equation with appropriate translational symmetry. Since the mass of 
lithium ion is less than that of ions of fluorine, chlorine, bromine and iodine we can write for the 
lithium ion wave function ( )rψ r  
 

ˆ ( ) ( )H r E rψ ψ=
r r       (1) 

2
ˆ ( )

2
H U

m
= ∆ +
h rr       (2) 

( ) ( )U r U r n= +
r r r       (3) 

where n  is translation vector  r

 1 1 2 2 3n n a n a n a3= + +
r r r r

3 3

     (4) 
Here, are positive or negative integers, 1 2, ,n n n 1 2, ,a a ar r r  are three independent lattice translations, 

Ĥ  is the Hamiltonian with 
2 2

2 2

2

2x y z
∂ ∂ ∂

∆ ≡ + +
∂ ∂ ∂

h,  is Planck’s constant divided by 2π , is the 

mass of lithium ion, and is potential energy of  the ion in the crystal. 

m

( )U rr

Equation (1) differs from well-known equation for electrons in a periodic potential only by 
the mass of the particle considered ( see, e.g. [2]).As a consequence, one can conclude that ion 
energy in ionic crystals is a function of wave vector k

r
 and solutions for real-valued ion 

eigenenergies exist only for specific energy intervals. In other words there is the ionic energy band 
structure. The wave-like ionic conductivity, however, is absent in the known ionic crystals like LiF, 
LiCl, LiBr and LiI. Using band-structure language, it means that all states in the lower (ionic 
valence) band are occupied and (ionic) energy band gap is very large. According to Pauli’s 
exclusion principle the redistribution of ions in ionic valence band upon available energy and 
momentum states is impossible, since no one ion is allowed to take the state occupied by another 
ion.  
 Returning now to the main theme one should mention that Pauli principle is applicable only 
to particles with half-integer spin. If the ion has integer spin then the redistribution of ions over 
available energy and momentum states will occur even in completely filled band upon application 
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of electric field, i.e. ionic conductivity is possible. It is well-known that the ion is a “bose-particle” 
if the sum of electrons, neutrons and protons , comprising the ion, is even, otherwise the ion is a 
fermion [3]. Note, that naturally-occurring crystals are constructed from single-charge fermionic 
ions the only exception being the ion of lithium isotope Li6, which consists of 3 neutrons, 3 protons 
and 2 electrons. 
 Now we would like to estimate the main characteristics of interest foe ionic crystals Li6F, 
Li6Cl, Li6Br and Li6I using tight-binding approximation (an analysis is quite similar to that for 
electrons [1]). Let the Hamiltonian of lithium ion in a molecule be 

2
ˆ ( )

2iH U
m

= ∆ +
h

i rr       (5) 

In that case we can take (as a zero order approximation) the linear combination of 
eigenfunctions of the Hamiltonian 

ˆ ( ) ( )i iH r E rψ ψ=
r r       (6) 

satisfying the Bloch theorem with amplitude possessing the translation invariance of the lattice 
 

2  ( ) ( )k l
i

l
r e rπψ ψ l= −∑

r r

r

rr r      (7) 

where is an eigenfunctions of  operator for lithium ion  and l(i r lψ −
rr ) ˆ iH

r
is the vector of the lattice 

site occupied by negative ion. 
Denoting by ( ) ( )k iU r U r−

r r  the difference of potentials seen by lithium ion in the crystal and 
in the molecule (which is supposed to be formed from positive lithium ion and negative halogen 
ion) we obtain as a first approximation for ion energy in the crystal 
 

2  ( ) ( ) jk l
iE k E E l e π= −∑

r rr r
      (8) 

{ }( ) ( ) ( ) ( ) ( )i k i iE l r l U r U r r drψ∗= − + −∫
r rr r r rψ r     (9) 

integration being performed over crystal volume. 
Taking into account only nearest-neighbor interaction in NaCl-type lattice we have 

{ }1 12 3,( ) ( , ) (0) 2 (100) cos cos cosiE k E k k k E E E ak ak ak+= = − + +
r

2 3

r drψ r

r drψ

  (10) 

{ }(0) ( ) ( ) ( ) ( )i k i iE r U r U rψ∗= − −∫
r r r r      (11) 

{ }(100) ( ) ( ) ( ) ( )i k i iE r a U r U rψ∗= − + −∫
r r r r r r     (12) 

where , ,  are wave vector projections on crystallographic axes (x,y,z) and is lattice 
constant. 

1k 2k 3k a

 For calculation of Li6 ion effective mass we can use a well-known (in tight-binding 
approximation) expression 

2

22 (100)
m

E a
∗ =

h       (13) 

If we choose the molecular potential in the form 
 

2

0
( ) exp( )

4i
qU r

r
λ r

πε ρ
= − + −      (14) 

and calculate the λ and ρ  parameters according to [1], then we obtain from (14) potential curves 
shown in Fig.1. 

Since minima of potential curves (Emin) differ from observed dissociation energies the 
molecular potential should be refined 
 

 2



1,5 2,0 2,5 3,0

-8

-6

-4

-2

0

2

4

LiBrLiCl

LiF

LiI

U  (eV)

r 

 

i

(Å} 1,5 2,0 2,5 3,0

-8

-6

-4

-2

0

2

4

LiF

LiCl

LiBr

LiI

  
r (Å) 

Ui  (eV) 

 
 
 

I
 
Fig.1. P
the mol

 
 
F
L

rr
qrUi +

∆−
−=

)(4
)(

0

2

πε
C=0 when r>rc   ,C=∆U=Ed-Emin, when r<rm, , С
 
∆r=0 when r>rc,  , ∆r =rm-rr, when r<rm, , ∆r =0
 
 Lattice constants (rc=a/2) and paramete
molecules and their dissociation energies into at
halogens and lithium ionization potential from [5
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lattice 
cons-
tant    
   Å 
 

rm 
 
molecu-
lar size   
Å 
 

∆E 
Difference 
between 
halogen electron 
affinity and Li 
ionization 
potential,  eV 

Eda   
Dissocia-
tion energy
of the
molecule 
into atoms ,
eV 

LiF 2,014 1,564 -1,9 6,0 
LiCl 2,570 2,021 -1,6 4,8 
LiBr 2,751 2,170 -1,9 4,4 
LiI 3,000 2,392 - 2,2 3,6 
 

Calculation of mole

For the ground state the lithium ion wave
symmetric and can be found from corresponding

2 2

2
2 ( (

2 iE U r
m r rr

ψ ψ∂ ∂
+ + −

∂∂

h

For numerical solution we used the follow
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Ed=Eda +∆E 
Dissocia-tion 
energy of the 
molecule into 
ions   
 
    eV 

rr
Calculated 
inter-ion 
distance in 
the molecule 
according to 
(14), Å 

      ρ 
   Å 

Emin 
eV 

308,3 -7,9 1,48 0,291 -7,814 
510,4 -6,4 2,002 0,330 -6,003 
615,6 -5,9 2,168 0,340 -5,589 
624 -5,8 2,39 0,366 -5,109 

cular wave functions 
 

function in a molecule ( )rψ  is spherically 
 Schrödinger equation 

))ψ = 0        (16) 

ing conditions 
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( ) 1rψ =  when  , mr r= ( ) 0rψ =  when 0r = and  2 cr a r= = , Е=Ed  (17) 
The normalized wavefunctions can be expressed as 

∫= drrri )(4/ 22ψπψψ        (18) 

and are shown in Fig.3. 
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(100) ( ) ( )
2 2i k i i
a aE r a U Uψ∗ ⎧ ⎫⎛ ⎞ ⎛ ⎞≈ − + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭∫ r drψ     (19) 

serting the ground state wave function into (18) one can calculate the exchange integral 
and then the effective mass of lithium ion from (13). Finally, the temperature of Bose-
tion ( ) can be estimated [6] from bT

2 2

2
3

2
3

3
2 2 0

2.612
2.612

2

b
B B

NT
Vm k m k a

π π
∗ ∗

⎛ ⎞
⎜

⎛ ⎞ ⎜= =⎜ ⎟ ⎜ ⎟×⎝ ⎠ ⎛ ⎞⎜ ⎟×⎜ ⎟⎜ ⎟⎝ ⎠⎝ ⎠

h h .5
⎟
⎟      (20) 

B  is Boltsmann constant, N/V is boson number density. Calculated results are presented in 

Estimated Bose-condensation temperature for Li6 ions in halogenide crystals 

Crystal ( / 2)kU a  
(eV) 

( / 2)iU a  
(eV) e

m
m

 bT  
(K) 

Li6F 10,525 7,13 0,13 1039 0,35 10-33

Li6Cl 8,64 5,8 0,1   1046 0,25 10-40

Li6Br 8,24 5,5 0,27   1048 0,8 10-43

Li6I 7,72 5 0,85 1046 0,24 10-41

 should be noted that for these heavy lithium ion’s effective masses at any real 
ures all ionic crystals are dielectrics. Indeed,  if we assume that in a defect-free ideal crystal 
inant scattering mechanism for Li-ions is scattering by acoustical phonons and take into 
that ion’s concentration in ionic crystal and electron’s concentration in a metal are of the 
er of magnitude, and denote the electron effective mass in a metal by me, we can estimate 
fic resistivity of ionic crystal ρc in comparison with that of metal ρm as  ρc~ρm(m*/me)5/2 . 
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Where ρm=105 Ohm●cm is a typical metal resistivity. Experimental observation of wave-like ionic 
conductivity is thus highly problematical since real ionic conductivity in available crystals is 
completely dominated by defects and is many orders of magnitude higher. 

 
Heterostructures 

If, however, the ionic crystal is compressed so that Li wavefunction overlap becomes 
significant, than Bose-condensation temperature for Li6 ions can be increased significantly. 
Denoting by sa  the lattice constant of compressed crystal we can write 

(100) ( ) ( )
2 2i s k i i
a aE r a U U r drψ∗ ⎧ ⎫⎛ ⎞ ⎛ ⎞≈ − + −⎨ ⎬⎜ ⎟ ⎜ ⎟

⎝ ⎠ ⎝ ⎠⎩ ⎭
∫ ψ     (21) 

where 
2k
aU ⎛ ⎞

⎜ ⎟
⎝ ⎠

 is experimental value of the ion binding energy in a crystal. 

Substituting the ground-state wavefunction into (21) one can calculate the exchange integral and 
estimate the new values for effective mass of Li6 ions, m∗ , and Bose-condensation temperature, , bT

2

22 (100) s
m
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h    ;   2

2
3

3
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2.612
2
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B s
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m k a

π
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⎛ ⎞
⎜
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h
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     (22)  

The results of these calculations are presented in Fig.4 and Fig.5.  
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layer of substrate material forming thus a double heterostructure (see Fig.6(a)) or even a multi-
quantum well structure (Fig.6(b)).  
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An epitaxial route to highly compressed ionic crystals seems to be worthy to attempt at 
using, for example, the molecular beam epitaxy. Evidently, very thin layers (in the 2-3 monolayer 
range) are desirable since compression of thick layers to the targeted 20% is practically impossible. 
Assuming  lattice constant of the compressed crystal is equal to that of the substrate we estimated 
through (22)  the effective mass of lithium ion and Bose condensation temperature for some 
combinations. Results are shown in Table 3. 
 

Table 3. Calculated Bose-condensation temperature for epitaxially- compressed ionic crystals 

 

Substrate and thick overlayer 
material 

Thin layer 
material 

Li6 ion effective 
mass ( / em m )∗  

Bose-condensation 
temperature for Li6 
ions 

Lattice 
compression 

/sa a  
LiF      (as/2=2,014 Å) Li6Cl 24 1870 0,784 
LiF      (as/2=2,014 Å) Li6Br 7,9 5700 0,732 
LiF      (as/2=2,014 Å) Li6I 8,2 5460 0,671 
NaF     (as/2=2,317 Å) Li6I 6,5 5250 0,772 
LiH   (as/2=2,04 Å) Li6Cl   1270 34,5 0,793 
LiH   (as/2=2,04 Å) Li6Br 8,14 5400 0,741 
LiH   (as/2=2,04 Å) Li6I 6 5780 0,68 

Inspecting Tables 2 and 3 one can state that an attempt to observe the superconductive state 
in ionic crystals containing Li6 is completely useless since temperatures involved are less than 10-
40K.  For compressed crystals, however, the story is different. In layered pseudomorphic structures 
it is possible to fix the ionic superconductivity at room temperature and even higher (on the 
premise, of cause, that assumptions involved are valid). 

In order to reduce the dislocation density in epilayers it is better to use the solid solutions of 
ionic crystals. For example, on LiF substrate the layer of (Li6Cl)1-x(Li6F)x could be formed. As to 
the ionic density, the alloy  (Li6Cl)1-x(Li6F)x film is more and more like LiF with increasing x. And 
less compression is needed to obtain the targeted overlap of neighboring lithium ions. For x < 0,5 
the electronic properties of the alloy will not, probably, differ substantially from that of pure Li6Cl 
in a sense of wave function overlap between neighboring lithium ions. In any case some regions 
should exist in the compressed film where ionic superconductivity can be observed. 

In the crystal lattice each lithium ion is surrounded by 6 halogen ions. To achieve the desired 
goals it is sufficient to increase the overlap of only two (from 6) molecular wavefunctions and if 
one is able to produce the ordered solid alloys the composition x can be increased up to 1-1/3=0.67. 
Presently the experimenters are unable to make such things.  

In order to reduce the layer/substrate lattice mismatch the overlayer can be made from solid 
alloys. As an illustration let us take the following example. In the Li6I - NaF system the lattice 
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mismatch is about 22,8%  (as/a=0,772). Admixing Li6F we get the solid solution (Li6I)1-x (Li6F)x. 
For x < 0,5 the electronic properties of the alloy will not, probably, differ substantially from that of 
pure Li6I in a sense of wave function overlap between neighboring lithium ions. But the average 
distance between nearest- neighbor ions ( ac ) in the (Li6I)1-x (Li6F)x could be made much closer to 
that of the NaF substrate (as). As a result the dislocation density in epilayer could be reduced. Due 
to Vegard’s law ac = (a(1-x) +xb), where b is the lattice constant of admixed Li6F, a is the lattice 
constant of Li6I. For x=0,3 we have ac=2,7042 (Å), as/ac=0,9014. Under condition of equality of 
the lattice parameters of the compressed (Li6I)1-x (Li6F)x film and substrate, compressing (Li6I)0,7 
(Li6F)0,3 by only 9%, we will compress the Li6I by 22,8%.! 

Note also that ionic crystals can be compressed much more easily than semiconductors since 
their bulk moduli (B) are smaller (for example, BSi/BLiI ≈ 5,8 and  BGe/BLiI ≈4,4). 

In order to compress the LiI crystal  by 22% of its initial volume the pressure applied must 
be in the 2-3 GPa range. From other calculations follows, that the necessary value of pressure for 
LiI is equal ~ 50 GPa .  Since pressures of the order of 50 GPa  are achievable in practice the 
experimenters have an opportunity to check if the Li6I crystals are ionic superconductors at high 
pressure [8]. On an evocative site [8] there is also padding information concerning an ionic 
superconductivity. 

Conclusion 
 It is far from being clear to what extent the band-structure theory can be applied to the ions 
in ionic crystals. As to electrons, the theory already has a multiple experimental confirmations. But 
the author is unaware as to mathematical substantiation of the band theory for electrons. 
Unfortunately, for ions there is presently no experimental facts supporting or denying its 
applicability, simply because it is impossible  to study magnetic properties  of any substance at  1040 
K.  Apparently, it is also valid that nobody never has compressed ionic crystals by 20% of their 
initial (1 atm) volume measuring simultaneously their electrical properties, since only recently this 
possibility has been demonstrated for extremely thin epilayers. Ideally, one must be able to solve a 
many-particle problem with all interactions of valence electrons and ion’s-core included. But such a 
solution, and especially its reduction to the form sufficiently simple for extracting the 
experimentally measured values, remains a dream. Therefore, only experiment is able to 
definitively answer the question about the adequacy of our calculations to reality.   

The author hopes that some of the readers may be instrumental in fabrication of 
heterostructures described above. Taking into account the well-developed semiconductor 
heteroepitaxial technologies this high compression (in two dimensions) can be accomplished in 
practice by MBE-growing the short-period strained-lattice superlattices from very thin (several 
monolayers) layers of corresponding ionic crystal interdisposed by relatively thick layers of 
thoughtfully-chosen solid alloys 

The author should like to express his sincere thanks to A. I Maksutov, A.G. Korenev, A. I. 
Startsev and to Dr. S. I. Chikichev for their help in my work. 
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